由于工作需要,需要进行并行查询数据库,返回结果后进行计算,也就是说各个线程要全部运行完毕,才能进行下一步的计算,这时候要用到CountDownLatch。
先上代码,实现的比较简单,但是这不是重点,哈哈哈,主要是分析Executor相关的原理。 线程池相关参数及含义等可参考下面这篇文章,内部也有部分源码分析,但是个人认为不够详尽。package com.gome.mars.utils;import java.util.concurrent.*;/** * @ClassName * @Description TODO * @Author oo * @Date 2018/12/10 18:00 * @Version 1.0 **/public class SimpleParallelTaskExecutor { private CountDownLatch countDownLatch; // 此处实现了固定大小的线程池,可根据需要进行其他实现,每次不再新建线程池实例 private static ExecutorService executor=Executors.newFixedThreadPool(20); //构造方法参数为并行线程的数量,并且每次new CountDownLatch对象,因为不可重复使用 public SimpleParallelTaskExecutor(Integer nThreads) { this.countDownLatch = new CountDownLatch(nThreads); } //调用此方法向线程池中添加任务,此处对Callable进行了简单包装,为了执行完任务调用countDownLatch.countDown(); public我们在addTask方法处打断点,进入submit方法,可以看出我们进入的是AbstractExecutorService类的submit方法,此方法接受一个callable对象,返回Future对象,我们可以在Future中获取执行结果。Future addTask(Callable task) throws Exception { return executor.submit(new WrapperThread (task,countDownLatch)); } //可设置超时时间,检查任务是否运行完毕 public boolean checkDone(long milliseconds) throws InterruptedException { return countDownLatch.await(milliseconds, TimeUnit.MILLISECONDS); } //Callable包装类,为了执行完任务调用countDownLatch.countDown(); public class WrapperThread implements Callable { private Callable callable; private CountDownLatch countDownLatch; public WrapperThread(Callable callable, CountDownLatch countDownLatch) { this.callable = callable; this.countDownLatch = countDownLatch; } @Override public V call() throws Exception { //此处直接调用callable.call();和直接调用thread.run()类似,没有起新的线程此处和加入的任务内部是同一个线程。 V call = callable.call(); this.countDownLatch.countDown(); return call; } } public static void main(String[] args) throws Exception { SimpleParallelTaskExecutor simpleParallelTaskExecutor = new SimpleParallelTaskExecutor(2); Future integerFuture = simpleParallelTaskExecutor.addTask(() -> { //此处模拟执行数据查询等任务 Thread.sleep(2000); return 1; }); Future integerFuture1 = simpleParallelTaskExecutor.addTask(() -> { Thread.sleep(1000); return 2; }); simpleParallelTaskExecutor.checkDone(3000); Integer integer = integerFuture.get(); Integer integer1 = integerFuture1.get(); System.out.println(integer); System.out.println(integer1); }}复制代码
/** * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ publicFuture submit(Callable task) { if (task == null) throw new NullPointerException(); RunnableFuture ftask = newTaskFor(task); execute(ftask); return ftask; } /** * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public Future submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture ftask = newTaskFor(task, null); execute(ftask); return ftask; } /** * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public Future submit(Runnable task, T result) { if (task == null) throw new NullPointerException(); RunnableFuture ftask = newTaskFor(task, result); execute(ftask); return ftask; }复制代码
submit方法有几个重载方法,都是通过NewTaskFor方法,将任务包装成一个RunnableFuture对象,只不过Runnable没有返回结果,结果类型为null。
下面我们看看NewTaskFor都做了些什么事情。/** * Returns a {@code RunnableFuture} for the given runnable and default * value. * * @param runnable the runnable task being wrapped * @param value the default value for the returned future * @paramthe type of the given value * @return a {@code RunnableFuture} which, when run, will run the * underlying runnable and which, as a {@code Future}, will yield * the given value as its result and provide for cancellation of * the underlying task * @since 1.6 */ protected RunnableFuture newTaskFor(Runnable runnable, T value) { return new FutureTask (runnable, value); } /** * Returns a {@code RunnableFuture} for the given callable task. * * @param callable the callable task being wrapped * @param the type of the callable's result * @return a {@code RunnableFuture} which, when run, will call the * underlying callable and which, as a {@code Future}, will yield * the callable's result as its result and provide for * cancellation of the underlying task * @since 1.6 */ protected RunnableFuture newTaskFor(Callable callable) { return new FutureTask (callable); }复制代码
可以看出,直接创建了FutureTask对象,并且返回。所以,加入线程池的任务都被包装成FutureTask对象,没有返回值的返回值为空。
下面主要看execute(ftask);方法 ThreadPoolExecutor中的execute方法。 用一个32位数的高3位表示线程池状态,低29位表示正在运行的线程数量public class ThreadPoolExecutor extends AbstractExecutorService { //初始状态为Running状态且运行线程数为0,所以是-1和0按位取或 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); //32-3为29 private static final int COUNT_BITS = Integer.SIZE - 3; //1左移29位再减1,低29位全为1,高位位0; private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits private static final int RUNNING = -1 << COUNT_BITS; private static final int SHUTDOWN = 0 << COUNT_BITS; private static final int STOP = 1 << COUNT_BITS; private static final int TIDYING = 2 << COUNT_BITS; private static final int TERMINATED = 3 << COUNT_BITS; // Packing and unpacking ctl //低29位取反都为0,高三位都为1,再和c进行按位与,只留下高三位,从而获取线程池状态 private static int runStateOf(int c) { return c & ~CAPACITY; } //获取工作线程数量,与上面类似,取得低29位。 private static int workerCountOf(int c) { return c & CAPACITY; } private static int ctlOf(int rs, int wc) { return rs | wc; }}复制代码
在程序运行中,反复使用了这几个方法,用来获取工作线程数或线程池状态
/** * Executes the given task sometime in the future. The task * may execute in a new thread or in an existing pooled thread. * * If the task cannot be submitted for execution, either because this * executor has been shutdown or because its capacity has been reached, * the task is handled by the current {@code RejectedExecutionHandler}. * * @param command the task to execute * @throws RejectedExecutionException at discretion of * {@code RejectedExecutionHandler}, if the task * cannot be accepted for execution * @throws NullPointerException if {@code command} is null */ public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn't, by returning false. * * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. */ //获取c的值,判断工作线程数是否小于设定的核心线程数 int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { //如果小于核心线程数,直接新建线程,新建成功则返回 if (addWorker(command, true)) return; c = ctl.get(); } //如果上变判断不成立,那么工作线程数量大于等于核心线程数, //或者新建线程没有成功,那么如果线程池接受新任务,则往队列里添加一个任务 //如果线程池中工作线程数已经达到了核心线程数,并且没有设置空闲销毁时间 //新任务到来就只是向阻塞队列里增加一条新任务,线程池是如何拿到这个任务并执行的呢? if (isRunning(c) && workQueue.offer(command)) { //再次检查,防止并发状态下,线程池状态等有变化 int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command); }复制代码
重点方法是addWorker方法下面进一步分析
/** * Checks if a new worker can be added with respect to current * pool state and the given bound (either core or maximum). If so, * the worker count is adjusted accordingly, and, if possible, a * new worker is created and started, running firstTask as its * first task. This method returns false if the pool is stopped or * eligible to shut down. It also returns false if the thread * factory fails to create a thread when asked. If the thread * creation fails, either due to the thread factory returning * null, or due to an exception (typically OutOfMemoryError in * Thread.start()), we roll back cleanly. * * @param firstTask the task the new thread should run first (or * null if none). Workers are created with an initial first task * (in method execute()) to bypass queuing when there are fewer * than corePoolSize threads (in which case we always start one), * or when the queue is full (in which case we must bypass queue). * Initially idle threads are usually created via * prestartCoreThread or to replace other dying workers. * * @param core if true use corePoolSize as bound, else * maximumPoolSize. (A boolean indicator is used here rather than a * value to ensure reads of fresh values after checking other pool * state). * @return true if successful */ //第二个参数表示是否是核心线程,比较工作线程数目时,分别和corePoolSize 或者maximumPoolSize进行比较 private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. //此处为何还要有第二个判断? //我们分析一下当rs==SHUTDOWN 时,什么情况会返回false //1.线程池shutdown, 此时firstTask为null 并且workQueue为空时 //2.线程池shutdown,firstTask不为null这时 workQueue状态已经没有用了 //SHUTDOWN状态虽然不接受新任务,但是队列里的任务会执行完, //也就是说当线程池为SHUTDOWN时,为了执行完队列中的任务, //会不断添加firstTask为null的任务,firstTask为null代表要取队列中的任务 //第一种情况表示队列中的任务已经清空了,无需再循环了,线程池可能将要进入stop状态了 //第二种情况表示新任务到来,线程池已经不再接受了,所以返回false if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; //内层循环主要工作就是cas为增加一个工作线程 for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; //增加成功就退出外层循环 if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl //线程池状态状态有变化就继续执行外层循环 if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { //包含一个Thread对象,传入的是Worker对象本身,后边有详细解释。 w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); //正常运行状态或者队列中还有未执行的任务 if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { //如果线程添加成功,就启动线程,执行任务。实际是执行runWorker方法。 t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); } return workerStarted; }复制代码
Worker实现了Runnable接口,继承AbstractQueuedSynchronizer类,所以本身就是一个线程类,有自己的run方法。
/** * Class Worker mainly maintains interrupt control state for * threads running tasks, along with other minor bookkeeping. * This class opportunistically extends AbstractQueuedSynchronizer * to simplify acquiring and releasing a lock surrounding each * task execution. This protects against interrupts that are * intended to wake up a worker thread waiting for a task from * instead interrupting a task being run. We implement a simple * non-reentrant mutual exclusion lock rather than use * ReentrantLock because we do not want worker tasks to be able to * reacquire the lock when they invoke pool control methods like * setCorePoolSize. Additionally, to suppress interrupts until * the thread actually starts running tasks, we initialize lock * state to a negative value, and clear it upon start (in * runWorker). */ private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** * This class will never be serialized, but we provide a * serialVersionUID to suppress a javac warning. */ private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { setState(-1); // inhibit interrupts until runWorker this.firstTask = firstTask; //新建Thread对象,传入自身 this.thread = getThreadFactory().newThread(this); } /** Delegates main run loop to outer runWorker */ //当调用Thread.start()时,新线程启动,调用runWorker方法,传入自身 public void run() { runWorker(this); } // Lock methods // // The value 0 represents the unlocked state. // The value 1 represents the locked state. protected boolean isHeldExclusively() { return getState() != 0; } protected boolean tryAcquire(int unused) { if (compareAndSetState(0, 1)) { setExclusiveOwnerThread(Thread.currentThread()); return true; } return false; } protected boolean tryRelease(int unused) { setExclusiveOwnerThread(null); setState(0); return true; } public void lock() { acquire(1); } public boolean tryLock() { return tryAcquire(1); } public void unlock() { release(1); } public boolean isLocked() { return isHeldExclusively(); } void interruptIfStarted() { Thread t; if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { try { t.interrupt(); } catch (SecurityException ignore) { } } } }复制代码
runWorker方法是真正执行用户传进来的任务的地方,并且可以重写beforeExecute以及afterExecute方法,再任务执行前后加入自定义操作。
/** * Main worker run loop. Repeatedly gets tasks from queue and * executes them, while coping with a number of issues: * * 1. We may start out with an initial task, in which case we * don't need to get the first one. Otherwise, as long as pool is * running, we get tasks from getTask. If it returns null then the * worker exits due to changed pool state or configuration * parameters. Other exits result from exception throws in * external code, in which case completedAbruptly holds, which * usually leads processWorkerExit to replace this thread. * * 2. Before running any task, the lock is acquired to prevent * other pool interrupts while the task is executing, and then we * ensure that unless pool is stopping, this thread does not have * its interrupt set. * * 3. Each task run is preceded by a call to beforeExecute, which * might throw an exception, in which case we cause thread to die * (breaking loop with completedAbruptly true) without processing * the task. * * 4. Assuming beforeExecute completes normally, we run the task, * gathering any of its thrown exceptions to send to afterExecute. * We separately handle RuntimeException, Error (both of which the * specs guarantee that we trap) and arbitrary Throwables. * Because we cannot rethrow Throwables within Runnable.run, we * wrap them within Errors on the way out (to the thread's * UncaughtExceptionHandler). Any thrown exception also * conservatively causes thread to die. * * 5. After task.run completes, we call afterExecute, which may * also throw an exception, which will also cause thread to * die. According to JLS Sec 14.20, this exception is the one that * will be in effect even if task.run throws. * * The net effect of the exception mechanics is that afterExecute * and the thread's UncaughtExceptionHandler have as accurate * information as we can provide about any problems encountered by * user code. * * @param w the worker */ final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { //如果task!=null 就执行当前任务(工作线程数小于核心现场数), //如果为null(队列中有任务)就在队列中获取一个任务, //此处可以看出,如果队列中有任务,会一直while循环,直到队列为空, //队列为空时,由于是阻塞队列,线程将阻塞在这里,直到又有任务添加进队列 while (task != null || (task = getTask()) != null) { w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { //空方法 beforeExecute(wt, task); Throwable thrown = null; try { //真正执行我们的任务 task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { //空方法 afterExecute(task, thrown); } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { //此方法用于处理当前工作线程退出的相关事宜 processWorkerExit(w, completedAbruptly); } } 复制代码
当此工作线程退出以后,相关清理及记录工作,当程序抛出异常,或队列不为空而没有工作线程时或工作线程数少于核心线程数时,会继续addWorker(null, false);替换当前工作线程。
/** * Performs cleanup and bookkeeping for a dying worker. Called * only from worker threads. Unless completedAbruptly is set, * assumes that workerCount has already been adjusted to account * for exit. This method removes thread from worker set, and * possibly terminates the pool or replaces the worker if either * it exited due to user task exception or if fewer than * corePoolSize workers are running or queue is non-empty but * there are no workers. * * @param w the worker * @param completedAbruptly if the worker died due to user exception */ private void processWorkerExit(Worker w, boolean completedAbruptly) { if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted decrementWorkerCount(); final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { completedTaskCount += w.completedTasks; workers.remove(w); } finally { mainLock.unlock(); } //一个工作线程退出后会尝试终止线程池,通过判断当前线程池的状态,如果终止成功则不会进入下边的if判断,否则进入if判断 tryTerminate(); int c = ctl.get(); //判断线程池是否是running或shutdown状态,再次判断completedAbruptly, //这个变量表示是否被打断,正常执行完毕一般为false,如果满足是就继续判断是否继续addWorker if (runStateLessThan(c, STOP)) { if (!completedAbruptly) { int min = allowCoreThreadTimeOut ? 0 : corePoolSize; if (min == 0 && ! workQueue.isEmpty()) min = 1; //1.如果设置了allowCoreThreadTimeOut 参数且队列为非空,则工作线程数为0的时候才addWorker //如果设置了allowCoreThreadTimeOut 且队列为空,则直接返回,不addWorker //如果没有设置allowCoreThreadTimeOut ,只要工作线程数小于核心线程数,都addWorker if (workerCountOf(c) >= min) return; // replacement not needed } //关键这在这,加入一条firstTask为null的非核心线程任务, addWorker(null, false); } }复制代码
总结
线程池执行过程:
- submit(Callable task)方法后,将task包装成一个FutureTask对象;
- 执行execute(ftask)方法 if(工作线程数<核心线程数){ addWorker(Runnable firstTask, boolean core) 添加成功 return; } 核心线程数已经达到最大 if(线程池是running状态){ 向队列中添加一个任务 workQueue.offer(command) }
- addWorker(Runnable firstTask, boolean core) 自旋尝试改变workerCount数量 compareAndIncrementWorkerCount(c) 成功 new Worker(firstTask); 并启动线程
- runWorker(Worker w) while(如果当前Worker中task!=null 执行此任务 否则从队列中task = getTask()) 调用task.run(); 队列为空时getTask()方法中根据参数设定判断何时返回null何时阻塞
- 当一个工作线程退出后执行processWorkerExit(w, completedAbruptly);方法中还会尝试终止线程池,如果线程池终止成功,则直接return 否则判断是否继续addWorker(null, false)替换当前线程
over
有不正确的地方欢迎指正!